Signal on the Sphere
- e3nn_jax.s2_irreps(lmax: int, p_val: int = 1, p_arg: int = -1) Irreps [source]
The Irreps of coefficients of a spherical harmonics expansion.
\[f(\vec x) = \sum_{l=0}^{L} \sum_{m=-l}^{l} c_l^m Y_{l,m}(\vec x)\]When the inversion operator is applied to the signal, the new function \(I f\) is given by
\[[I f](\vec x) = p_{\text{val}} f(p_{\text{arg}} \vec x)\]
- e3nn_jax.s2_dirac(position: Array | IrrepsArray, lmax: int, *, p_val: int = 1, p_arg: int = -1) IrrepsArray [source]
Spherical harmonics expansion of a Dirac delta on the sphere.
The integral of the Dirac delta is 1.
- Parameters:
position (
jax.Array
orIrrepsArray
) – position of the delta, shape(3,)
. It will be normalized to have a norm of 1.lmax (int) – maximum degree of the spherical harmonics expansion
p_val (int) – parity of the value of the signal on the sphere (1 or -1)
p_arg (int) – parity of the argument of the signal on the sphere (1 or -1)
- Returns:
Spherical harmonics coefficients
- Return type:
Examples:
position = jnp.array([0.0, 0.0, 1.0]) coeffs_3 = e3nn.s2_dirac(position, 3, p_val=1, p_arg=-1) coeffs_6 = e3nn.s2_dirac(position, 6, p_val=1, p_arg=-1) coeffs_9 = e3nn.s2_dirac(position, 9, p_val=1, p_arg=-1)